Multiples of 3 or 5

Problem Statement

If we list all the natural numbers below $10$ that are multiples of $3$ or $5$, we get $3, 5, 6$ and $9$. The sum of these multiples is $23$.

Find the sum of all the multiples of $3$ or $5$ below $7^N$, and give your answer as the sum of its digits.

Note: The wording might not be perfect, but the function $g(N)$ that's being asked for below is the result for $7^{2^N}$. This box always gives the function $f(N)$, and you then need to find how to compute $g(N)$, and here $g(N) = f(2^N)$.

Submit Answers

If $f(N)$ is the problem asked for above, then you need to submit values of $g(N) = f(1 \times 2^N)$

You need to submit in the format: "N:g(N)", possibly with multiple values at once, separated by commas.

Top Users

🥇 abcvuitunggio
29.67 (31)
🥈 butter-fly
29.17 (30)
🥉 wjkao
28.37 (29)
4 icy
28.37 (29)
5 liuguangxi
28.37 (29)
6 dottedcalculator
21.64 (22)
7 pacome
19.69 (20)
8 hacatu
16.75 (17)
9 ricbit
2.33 (39)

Data

Stats

Your submissions will appear here

Recent Submissions

1
pacome
$g(1)$, $2$ digits 1 hour, 45 minutes ago
2
pacome
$g(1)$, $2$ digits 1 hour, 45 minutes ago
3
liuguangxi
$g(29)$, $10$ digits 9 hours, 47 minutes ago
4
liuguangxi
$g(28)$, $10$ digits 9 hours, 55 minutes ago
5
liuguangxi
$g(28)$, $1$ digits 9 hours, 55 minutes ago