Squarefree Numbers

Problem Statement

A positive integer $n$ is called squarefree, if no square of a prime divides $n$, thus $1, 2, 3, 5, 6, 7, 10, 11$ are squarefree, but not $4, 8, 9, 12$.

How many squarefree numbers are there below $N$?

Submit Answers

If $f(N)$ is the problem asked for above, then you need to submit values of $g(N) = f(1 \times 8^N)$

You need to submit in the format: "N:g(N)", possibly with multiple values at once, separated by commas.

Top Users

🥇 butter-fly
29.00 (33)
🥈 icy
29.00 (29)
🥉 rrzmt
27.00 (27)
4 abcvuitunggio
23.00 (23)
5 wjkao
20.00 (20)
6 shash4321
19.00 (19)
7 dottedcalculator
19.00 (19)

Data

Stats

Your submissions will appear here

Recent Submissions

1
rrzmt
$g(27)$, $25$ digits 7 minutes ago
2
rrzmt
$g(26)$, $24$ digits 24 minutes ago
3
rrzmt
$g(25)$, $23$ digits 39 minutes ago
4
rrzmt
$g(24)$, $22$ digits 40 minutes ago
5
rrzmt
$g(23)$, $21$ digits 40 minutes ago