A Lagged Fibonacci Sequence

Problem Statement

A sequence is defined as:

  • $g_k = 1$, for $0 \le k \le 1999$
  • $g_k = g_{k-2000} + g_{k - 1999}$, for $k \ge 2000$.

Find $g_k \bmod 20092010$ for $k = 10^N$.

Submit Answers

If $f(N)$ is the problem asked for above, then you need to submit values of $g(N) = f(9 \times 2^N)$

You need to submit in the format: "N:g(N)", possibly with multiple values at once, separated by commas.

Top Users

🥇 hacatu
100.00 (100)
🥈 butter-fly
100.00 (100)
🥉 icy
100.00 (100)
4 pacome
11.00 (11)
5 shash4321
9.00 (9)
6 dnialh
2.00 (11)

Data

Stats

Your submissions will appear here

Recent Submissions

1
butter-fly
$g(100)$, $8$ digits 3 days, 4 hours ago
2
butter-fly
$g(99)$, $7$ digits 3 days, 4 hours ago
3
butter-fly
$g(98)$, $7$ digits 3 days, 4 hours ago
4
butter-fly
$g(97)$, $7$ digits 3 days, 4 hours ago
5
butter-fly
$g(96)$, $8$ digits 3 days, 4 hours ago